
simplerouter
Release 1.1.1

May 02, 2015

Contents

1 Quick Example 3

2 Adding Routes 5

3 Using a Router 7

4 Advanced Options 9
4.1 Default View . 9
4.2 Path Adjustment . 9
4.3 Raising Responses as Exceptions . 10
4.4 Trailing Slashes . 10
4.5 View Priority . 10
4.6 WSGI Views . 10

5 Further Reading 13

i

ii

simplerouter, Release 1.1.1

simplerouter is a simple WSGI/WebOb router partially based on the router described in WebOB’s DIY Framework
Tutorial.

Contents 1

http://docs.webob.org/en/latest/do-it-yourself.html
http://docs.webob.org/en/latest/do-it-yourself.html

simplerouter, Release 1.1.1

2 Contents

CHAPTER 1

Quick Example

app.py:

from simplerouter import Router

router = Router()
view names are composed of modulename:function
router.add_route(’/post/{name}’, ’views:post_view’)
router.add_route(’/’, ’views:index_view’)

application = router.as_wsgi

if __name__==’__main__’:
from wsgiref.simple_server import make_server
make_server(’’, 8000, application).serve_forever()

views.py:

from webob import Response

def post_view(request):
post_name = request.urlvars[’name’]
... process post_name
return Response("Post output for %s"%post_name)

def index_view(request):
return Response("Site index")

3

simplerouter, Release 1.1.1

4 Chapter 1. Quick Example

CHAPTER 2

Adding Routes

The Router object is composed of mappings of paths to views called routes, and are added using the
Router.add_route() method. The route path is matched against the Request‘s path_info 1 variable, and
the view is either a callable, or a string indicating the location of a callable in module_name:callable_name
format.

router.add_route(’/path’, viewfunc)
router.add_route(’/path’, ’module.views:named_view’)

Route paths may contain variables, which are indicated by curly braces:

router.add_route(’/path/{variable}/extra’, viewfunc)

By default, path variables will match any string not containing a forward slash. Normally, a variable matches any
character other than a forward slash, but an alternate regular expression can be provided after variable name with a
colon character:

router.add_route(r’/path/{variable:\d+}’, viewfunc)

Any path variables specified in the route path can be accessed in a dictionary attached to the Request object called
urlvars:

def viewfunc(request):
return Response(request.urlvars[’var1’])

router.add_route(’/path/{var1}/{var2}’, viewfunc)

Path variables may also be provided via the vars keyword to Router.add_route(), which will cause them to
appear in the urlvars dictionary. This could be useful if a view expects them but the route path doesn’t contain
them:

route.add_route(’/list’, viewfunc, vars={’page’ : 1})

Routes can be added to a router on creation without needing additional Router.add_route() calls:

router = Router(
(’/list’, viewfunc, { ’vars’ : {’page’ : 1} }),
(’/list/{page:\d+}’, viewfunc)

)

1 The path portion of a URL (the portion of the URL after the domain name) is further split into two parts called script_name and
path_info. The script_name portion of URL indicates the path that is directly associated with the web application, and the path_info
portion is the part of the URL after it. For a web application that is associated with an entire domain, the script_name would be blank, and the
path_info would be the entire url path. It is the path_info that the Router object matches route paths against.

5

simplerouter, Release 1.1.1

6 Chapter 2. Adding Routes

CHAPTER 3

Using a Router

The Router object is a callable that takes WebOb’s Request object. To use it, you would construct the Request
object from the WSGI environ, and then call the resulting Response object as a WSGI application:

def application(environ, start_response):
create request object
request = Request(environ)

invoke router
response = router(request)

complete request
return response(environ, start_response)

Alternatively, the Router.as_wsgi method may be used to do this automatically, so long as you don’t need to do
any extra processing and aren’t using the Router object within a larger framework:

application = router.as_wsgi

7

simplerouter, Release 1.1.1

8 Chapter 3. Using a Router

CHAPTER 4

Advanced Options

4.1 Default View

By default, a Router will return WebOb’s HTTPNotFound error response if no view manages to return a valid
response. This behavior can be changed by providing a different view via the default keyword to the Router
initializer.

router = Router(default="module:error_view")

4.2 Path Adjustment

By default, the script_name and path_info of a Request are not adjusted when used with a view. Normally,
this wouldn’t make much sense, as a route matches an entire url path, but this also makes it impossible to use a Router
as a view within another Router.

To facilitate this, the Route.add_route() method accepts the path_info keyword, which may be a regular ex-
pression (or True, which is a synonym for the regular expression /.*). Matching requests are altered such that the
script_name has the route path appended to it, and the path_info is replaced with the path_info keyword.

Consider the following the example:

example_router = Router()
example_router.add_route(’/’, ’example.views:index_view’)
example_router.add_route(’/info’, ’example.views:info_view’)
example_router.add_route(’/help’, ’example.views:help_view’)

router = Router()
router.add_router(’/example’, example_router, path_info=’/.*’)

The following table indicates which view would be called and how the script_name and path_info would be
altered:

Initial path_info View Resulting script_name Resulting path_info
/example/ example.views:help_view /example /
/example/info example.views:info_view /example /info
/example/help example.views:help_view /example /help

9

simplerouter, Release 1.1.1

4.3 Raising Responses as Exceptions

In addition to being returned normally, responses can be returned to the router by being raised by the raise statement.
While this isn’t usually used, this can be useful in certain circumstances, such as to prevent certain view decorators
from running normally.

Only subclasses of webob.exc.HTTPException can be returned by being raised. Normal Response objects
do not qualify, but all subclasses of webob.exc.HTTPException that have been predefined by WebOB are also
Response objects.

4.4 Trailing Slashes

If try_slashes is passed to the Router initializer, then the Router object will attempt to determine if a failed request
would have instead succeeded if the trailing slash on the url had instead been omitted or provided. If an alternate
matching route is found, then a HTTP temporary redirect response will be returned that will tell the user’s browser to
use the correct URL.

router = Router(try_slashes=True)
router.add_route(’/path’, viewfunc)
response = router(Request.blank(’/path/’))
response will be a redirect

If this option is used, it’s a good idea to make sure that any views that are capable of returning None should opt out of
this check by setting no_alt_redir in the Router.add_route registration function:

router.add_route(’/path’, viewfunc, no_alt_redir=True)

Under certain circumstances failure to handle this could result in an infinite redirect loop, which is why
try_slashes is not default behavior.

4.5 View Priority

Routes are checked in the order that they are added. While this behavior is not likely to change, it still might be
desirable set the priority of a route without altering the order that they are originally added, which can be done by
supplying the Router.add_route method with the priority keyword:

Router.add_route(’/path’, viewfunc, priority=10)

Routes with higher number priorty values are matched against before routes with lower number priority values.

4.6 WSGI Views

A WSGI application can be provided as a view if the wsgi keyword is provided to the Router.add_route
method:

def app_view(environ, start_response):
start_response(’200 OK’, [(’Content-Type’, ’text/plain’)])
return [b’hello, world\n’]

router.add_route(’/hello’, app_view, wsgi=True)

10 Chapter 4. Advanced Options

simplerouter, Release 1.1.1

Note: Most WSGI Applications do their own URL processing, so the wsgi keyword implies the path_info
keyword as described in Path Adjustment. The implicitly enabled path_info handling can be turned off by passing
path_info=False to Router.add_route().

4.6. WSGI Views 11

simplerouter, Release 1.1.1

12 Chapter 4. Advanced Options

CHAPTER 5

Further Reading

• PEP3333 (WSGI Specification)

• WebOb documentation

13

http://www.python.org/dev/peps/pep-3333/
http://webob.readthedocs.org/en/latest/

	Quick Example
	Adding Routes
	Using a Router
	Advanced Options
	Default View
	Path Adjustment
	Raising Responses as Exceptions
	Trailing Slashes
	View Priority
	WSGI Views

	Further Reading

